Bayesian data analysis / Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin.

"This book is intended to have three roles and to serve three associated audiences: an introductory text on Bayesian inference starting from first principles, a graduate text on effective current approaches to Bayesian modeling and computation in statistics and related fields, and a handbook of...

Full description

Saved in:
Bibliographic Details
Alternate Title:BDA3
Main Author: Gelman, Andrew (Author)
Format: Book
Language:English
Published:Boca Raton : CRC Press, 2014.
Edition:Third edition.
Series:Texts in statistical science.
Subjects:
LEADER 04754cam a2200433 i 4500
001 in00000437519
008 130930s2014 flua b 001 0 eng
005 20230221160735.5
010 |a  2013039507 
019 |a 1048881574 
020 |a 9781439840955  |q (hardback) 
020 |a 1439840954  |q (hardback) 
024 0 |a 7448428 
024 8 |a 99977312217 
035 |a 859253474 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCO  |d YDXCP  |d UKMGB  |d Z@L  |d PUL  |d VRC  |d MNW  |d ALM  |d OCLCF  |d STF  |d ZCU  |d RLA  |d OCLCQ  |d UX0  |d SAKAP  |d DHA  |d OCLCQ  |d GUA  |d UCW  |d QGQ  |d MM9  |d IL4J6  |d OCLCQ  |d RCJ  |d OCLCO  |d UtOrBLW 
042 |a pcc 
050 0 0 |a QA279.5  |b .G45 2014 
090 |a QA279.5  |b .G45 2014 
100 1 |a Gelman, Andrew,  |e author.  |0 http://id.loc.gov/authorities/names/nr95042460 
245 1 0 |a Bayesian data analysis /  |c Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin. 
246 1 8 |a BDA3 
250 |a Third edition. 
264 1 |a Boca Raton :  |b CRC Press,  |c 2014. 
300 |a xiv, 667 pages :  |b illustrations ;  |c 27 cm. 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
490 1 |a Chapman & Hall/CRC texts in statistical science 
520 |a "This book is intended to have three roles and to serve three associated audiences: an introductory text on Bayesian inference starting from first principles, a graduate text on effective current approaches to Bayesian modeling and computation in statistics and related fields, and a handbook of Bayesian methods in applied statistics for general users of and researchers in applied statistics. Although introductory in its early sections, the book is definitely not elementary in the sense of a first text in statistics. The mathematics used in our book is basic probability and statistics, elementary calculus, and linear algebra. A review of probability notation is given in Chapter 1 along with a more detailed list of topics assumed to have been studied. The practical orientation of the book means that the reader's previous experience in probability, statistics, and linear algebra should ideally have included strong computational components. To write an introductory text alone would leave many readers with only a taste of the conceptual elements but no guidance for venturing into genuine practical applications, beyond those where Bayesian methods agree essentially with standard non-Bayesian analyses. On the other hand, we feel it would be a mistake to present the advanced methods without first introducing the basic concepts from our data-analytic perspective. Furthermore, due to the nature of applied statistics, a text on current Bayesian methodology would be incomplete without a variety of worked examples drawn from real applications. To avoid cluttering the main narrative, there are bibliographic notes at the end of each chapter and references at the end of the book"--  |c Provided by publisher. 
504 |a Includes bibliographical references (pages 607-639) and indexes. 
505 0 |a Part I: Fundamentals of Bayesian inference. Probability and inference -- Single-parameter models -- Introduction to multiparameter models -- Asymptotics and connections to non-Bayesian approaches -- Hierarchical models -- Part II: Fundamentals of Bayesian data analysis. Model checking -- Evaluating, comparing, and expanding models -- Modeling accounting for data collection -- Decision analysis -- Part III: Advanced computation. Introduction to Bayesian computation -- Basics of Markov chain simulation -- Computationally efficient Markov chain simulation -- Modal and distributional approximations -- Part IV: Regression models. Introduction to regression models -- Hierarchical linear models -- Generalized linear models -- Models for robust inference -- Models for missing data -- Part V: Nonlinear and nonparametric models. Parametric nonlinear models -- Basis function models -- Gaussian process models -- Finite mixture models -- Dirichlet process models -- A. Standard probability distributions -- B. Outline of proofs of limit theorems -- Computation in R and Stan. 
590 |a 08/01/2022 mathb ctl 
650 0 |a Bayesian statistical decision theory.  |0 http://id.loc.gov/authorities/subjects/sh85012506 
775 0 8 |i Revision of:  |t Bayesian data analysis.  |b 2nd ed.  |d Boca Raton, Fla. : Chapman & Hall/CRC, ©2004  |z 158488388X  |w (DLC) 2003051474  |w (OCoLC)51991499 
830 0 |a Texts in statistical science.  |0 http://id.loc.gov/authorities/names/n94038042 
994 |a Z0  |b LAF 
999 f f |s aac3176f-b243-49bf-9976-ded3547352db  |i aac3176f-b243-49bf-9976-ded3547352db  |t 0 
952 f f |p Circulating  |a Lafayette College  |b Main Campus  |c Skillman Library  |d Skillman Upper Level  |t 0  |e QA279.5 .G45 2014  |i Book  |m 31826010751940