Dependability modelling under uncertainty : an imprecise probabilistic approach / Philipp Limbourg.

Mechatronic design processes have become shorter and more parallelized, induced by growing time-to-market pressure. Methods that enable quantitative analysis in early design stages are required, should dependability analyses aim to influence the design. Due to the limited amount of data in this phas...

Full description

Saved in:
Bibliographic Details
Online Access:Electronic book from Springer Complete
Main Author: Limbourg, Philipp.
Format: eBook
Language:English
Published:Berlin : Springer-Verlag, ©2008.
Series:Studies in computational intelligence ; v. 148.
Subjects:
LEADER 03996cam a2200517 a 4500
001 ocn288572430
003 OCoLC
005 20230320213024.0
006 m o d
007 cr cn|||||||||
008 081217s2008 gw a ob 001 0 eng d
016 7 |a 014634217  |2 Uk 
019 |a 237886852  |a 277189287  |a 607343760  |a 646764706  |a 746946685  |a 756438555  |a 880323172  |a 1005778435  |a 1035649704  |a 1044245655  |a 1050966358  |a 1056369535  |a 1058115623  |a 1060661062  |a 1060792755  |a 1069684782  |a 1110730548 
020 |a 9783540692874 
020 |a 3540692878 
020 |a 354069286X 
020 |a 9783540692867 
020 |z 9783540692867 
024 7 |a 10.1007/978-3-540-69287-4  |2 doi 
035 |a (OCoLC)288572430  |z (OCoLC)237886852  |z (OCoLC)277189287  |z (OCoLC)607343760  |z (OCoLC)646764706  |z (OCoLC)746946685  |z (OCoLC)756438555  |z (OCoLC)880323172  |z (OCoLC)1005778435  |z (OCoLC)1035649704  |z (OCoLC)1044245655  |z (OCoLC)1050966358  |z (OCoLC)1056369535  |z (OCoLC)1058115623  |z (OCoLC)1060661062  |z (OCoLC)1060792755  |z (OCoLC)1069684782  |z (OCoLC)1110730548 
037 |a 978-3-540-69286-7  |b Springer  |n http://www.springerlink.com 
049 |a LAFW 
100 1 |a Limbourg, Philipp. 
245 1 0 |a Dependability modelling under uncertainty :  |b an imprecise probabilistic approach /  |c Philipp Limbourg. 
260 |a Berlin :  |b Springer-Verlag,  |c ©2008. 
300 |a 1 online resource (xv, 139 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Studies in computational intelligence,  |x 1860-949X ;  |v v. 148 
504 |a Includes bibliographical references (pages 127-136) and index. 
588 0 |a Print version record. 
505 0 |a Dependability Prediction in Early Design Stages -- Representation and Propagation of Uncertainty Using the Dempster-Shafer Theory of Evidence -- Predicting Dependability Characteristics by Similarity Estimates -- A Regression Approach -- Design Space Specification of Dependability Optimization Problems Using Feature Models -- Evolutionary Multi-objective Optimization of Imprecise Probabilistic Models -- Case Study -- Summary, Conclusions and Outlook. 
520 |a Mechatronic design processes have become shorter and more parallelized, induced by growing time-to-market pressure. Methods that enable quantitative analysis in early design stages are required, should dependability analyses aim to influence the design. Due to the limited amount of data in this phase, the level of uncertainty is high and explicit modeling of these uncertainties becomes necessary. This work introduces new uncertainty-preserving dependability methods for early design stages. These include the propagation of uncertainty through dependability models, the activation of data from similar components for analyses and the integration of uncertain dependability predictions into an optimization framework. It is shown that Dempster-Shafer theory can be an alternative to probability theory in early design stage dependability predictions. Expert estimates can be represented, input uncertainty is propagated through the system and prediction uncertainty can be measured and interpreted. The resulting coherent methodology can be applied to represent the uncertainty in dependability models. 
546 |a English. 
506 |a Access limited to authorized users. 
650 0 |a Computer systems  |x Reliability. 
650 0 |a Uncertainty (Information theory) 
650 0 |a Dempster-Shafer theory. 
650 0 |a Computer systems  |x Reliability  |x Mathematical models. 
776 0 8 |i Print version:  |a Limbourg, Philipp.  |t Dependability modelling under uncertainty.  |d Berlin : Springer-Verlag, ©2008  |w (DLC) 2008928450 
773 |t Springer Complete eBooks. 
830 0 |a Studies in computational intelligence ;  |v v. 148. 
856 4 0 |u http://ezproxy.lafayette.edu/login?url=https://link.springer.com/10.1007/978-3-540-69287-4  |z Electronic book from Springer Complete